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We use the transfer matrix formalism to examine the behavior of some 
anisotropic hard-core fluids, the centers of whose particles are constrained to a 
line. At large elongation and pressure, the compressibility factor 13p/p is higher 
than that for a system with complete aligment by a factor 1 + v that depends 
upon the molecular geometry. For molecules with a finite radius of curvature, 
e.g., ellipses, v = d/2, while for objects with flat sides v = d; here d is the number 
of orientational degrees of freedom. A connection is made to some recent studies 
of hard ellipsoid fluids. We also model the effect of an external field on physical 
adsorption and show the existence of a phase transition in certain limiting 
situations. 

KEY WORDS:  Anisotropic hard-core fluids; one-dimensional models; large 
elongation. 

1, I N T R O D U C T I O N  

In this work, we examine the behavior of some one-dimensional molecular 
systems with anisotropic hard-core interactions. Specifically, we investigate 
the effects of increasing elongation and external fields on the ther- 
modynamic and structural properties. These studies were prompted by the 
computer simulations of Frenkel et al. (t'2) and others (3) on the phase 
diagram of hard ellipsoids of revolution. We were particularly motivated by 
an interesting theoretical paper of Frenkel (4) investigating the relationship 
between the melting of extremely prolate (or oblate) ellipsoids of 
revolution and the solid-fluid transition of hard spheres. 
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Frenkel obtained an approximate expression for the free energy of 
such an elongated ellipsoidal system considered as a function of q = pro 

and e, where Vo is the volume of a single ellipsoid and e is the elongation 
(height/width). It follows from this expression that in the limit e ~ ~ the 
difference between the pressure of the ellipsoids and that of the 
corresponding hard-sphere systems does not vanish (Lebowitz and 
Perram (5) showed that the translational partition function of a system of 
perfectly aligned ellipsoids is the same as for hard spheres with the same t/). 
An intriguing question is whether Frenkel's result is exact, and how it 
applies to other objects, e.g., spherocylinders. We find indeed that such 
behavior is typical of the dimensionally constrained molecular systems 
examined: although they are compelled to line up under high elongation or 
high pressure, their limiting equations of state are no t  those of the 
corresponding fully aligned systems. 

The simple analytic models that we propose have a further interesting 
application when an external field is applied. Recent computer simulations 
of nitrogen absorbed on a graphite surface (6) yielded some intriguing 
results for the orientational distribution function, i.e., the distribution of the 
angle between the intramolecular axis vector and the graphite surface. At 
low densities, the molecular substrate interaction is dominant and one 
observes that nearly all the molecules lie parallel to the surface. With 
increasing density the orientational distribution becomes bimodal, that is, a 
second minimum appears and a significant fraction of the molecules are 
almost perpendicular to the surface. Our model is able to reproduce this 
effect, appearing as a phase transition in the infinite elongation limit, which 
results from the competition between the field of the substrate and the 
molecule-molecule interactions. 

2. GENERAL THEORY 

We imagine N identical molecules with their centers of symmetry 
restricted to lie on a line. We consider a nearest neighbor hard-core 
interaction which depends on the relative orientation of a pair of molecules. 
In this situation a transfer operator analysis is possible. To further simplify 
matters, consider first the case where the molecules are assumed to have a 
single rotational degree of freedom, i.e., they rotate in the plane containing 
the line through the centers. The configurational partition function for this 
system in the isobaric ensemble is (periodic boundary conditions are 
imposed such that XN = 1 = Xl) .  

f 
~ 

Tr Z :  = dO ZNp (O, O) 
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Here Zp(O, 0') is the transfer operator, defined as 

Zp(O, 0 ' )=  e x p [ -  fl~b(x; 0, 0 ')]  ex p ( - f l p x )  dx (1) 

where ~(x; 0, 0') is the potential between a pair of molcules separated by a 
distance x with orientations 0 and 0' (measured with respect to some fixed 
space axis: conveniently the normal to the line of molecular centers; Fig. 1). 
A more complete description of the transfer matrix theory applied to 
molecules with an orientational degree of freedom is given in the paper of 
Casey and Runnels/7) For  hard-core interactions, 

oo, x<a(O,O') 
~(x;  0, 0 ')  = 0, x > a(0,  0 ' )  

where the hard-core diameter a(0, 0 ' ) = a ( 0 ' ,  0) is the closest distance 
between a pair of molecules with orientations 0 and 0' such that there is no 
overlap. With this choice, the transfer operator becomes 

Zp(O, 0') = (1/tip) exp[ -~pa(O, 0')]  (2) 

In order to obtain information about the thermodynamic and structural 
properties, one has to solve the integral equation 

f~ zAo, o')~,(O')dO'=;~4,(O) (3) 
- - r e  
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Fig. 1. A diagram illustrating the angles specifying the orientation of two planar convex 
molecules. The diagram also shows the separation of centers at contact a(0, 0') and the boun- 
dary parameters t and t' of Sec. 5. 
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In the thermodynamic limit N ~  o% the square of the eigenfunction ~,(0) 
corresponding to the unique maximum eigenvalue 2 is proportional to the 
angular distribution function w(O), i.e., the probability that a molecule has 
an orientation between 0 and 0 + dO. The eigenvalue is simply related to 
the chemical potential #: In 2 = - f l#  (up to a constant) and thus provides 
a link to thermodynamics through the relation (in the thermodynamic 
limit) 

1 1 81n2 
- ( 4 )  

P fl ~P 

Analytic solution of Eqs. (2) and (3) is in general not feasible, but 
limiting solutions can be quite instructive. In particular, let us consider the 
closed-packed, high-pressure, limit. For general hard convex objects, we 
note that the important contribution to 2 will then come from the vicinity 
of the minimum value of a(O, 0'). We assume that this occurs for 0 = 0' = 0 
and that a(O, 0') can be written for 0, 0 ' ~  0 as 

a(O,O' )=a+(AlO+O' lT+B[O-O'[~)[1-o(O,O' )]  (5) 

where 0(0, 0') ~ 0 as O, O' ~ 0 and a is the minimum diameter. We have 
7 = 1 for objects with straight edges, like rectangles, and 7 = 2 for bodies 
with a finite radius of curvature at the minimum contact diameter, like 
ellipses. In the high-pressure limit, the integral equation (3) bcomes 
approximately 

e x p ( - a t p ) [ ~  exp[_ tp (A lO+O,  lT + BlO+O,le) ] tp(O')dO'=2~(O) 
ill) J- ~ 

With the changed variable ~ = (tp)l/~O, we get 

2. = ; 4 e - a ~ p / t p ) ( t p ) - l / ,  

where .t is independent of tip: it is the maximum eigenvalue of the equation 

2 f ( z )=  e x p [ - A ( z + z ' ) ~ - B I z - z ' l ~ l f ( z ' ) d z  ' 
- - o o  

From (4), the limiting equation of state is easily shown to have, not the 
intuitively expected pure hard-rod form t p o ( p ) = p / ( 1 - a p )  for strictly 
parallel alignment, but rather 

lira P(P)/Po(P)= 1 + 1/7 (6) 
p --~ o o  

For simple convex objects, this ratio is 1.5 (finite curvature) or 2 (zero cur- 
vature). 
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At this level of analysis, we can head toward the hard ellipsoidal 
system considered by Frenkel by permitting the molecules to rotate in three 
dimensions. For molecules with an axis of symmetry, the orientation is now 
specified by two angles 0, ~b. The centers are still constrained to a line and 
only nearest neighbor interactions are permitted. The latter condition 
would be automatically satisfied by disks or more generally by oblate ellip- 
soids of revolution ("platelets"), but not by prolate ellipsoids of revolution 
("roods"). Since the distance of closest approach is clearly invariant with 
respect to rotation about the line of centers, it depends only upon the 
difference of the polar angles: ~r(0, 0', ~b-~b'). In the transfer operator 
formalism, this result immediately implies that the maximal eigenfunction 
is independent of ~b, 

;o ~ fo d~b' sin 0' dO' Zp(8, 0', (~ - (b') ~b(8') = 20(0  ) 

Inserting a reasonable form for a in the vicinity of the minimum, 

,7(8, 0',  ~ - ~ ' )  = a + A 18 + 0'1 ~ + B 1 8 -  8'1 ~ + c8~/2(8')~/2 f ( ~  - qk') + ...  

leads as in (5) to the limiting equation of state 

lim P(P)/Po(P)= 1 + 2/7 (7) 
p ~  

differing from the previous result by a factor of 2, which is simply a result 
of the new weight factor sin 0 dO. Note that for bodies with finite radius of 
curvature, 7 = 2, the limiting pressure is now twice that of the fully aligned 
situation. This is exactly the result obtained by Frenkel. 

3. A S O L V A B L E  M O D E L  

Another option is that of weakening our insistence on dealing with a 
system of legitimate hard objects, and instead use models designed to 
permit ready solvability of the integral equation (3). In particular, where 
the transfer operator is factorizable, i.e., Zp(O, 8 ' ) = f ( 8 ) f ( O ' ) ,  (3) is easily 
solved: ~ p ( 8 ) = f ( 8 )  and 2 = S I f ( 8 ) ] 2 d S .  For objects with a center of 
symmetry (true in all cases we consider), we have 

a(8, 8')= a(-8, -8') 

~(0 + ~, 0') = ~r(0, 0') = cr(0, 0' + ~) 

The simplest nontrivial form of ~r(0, 8') that permits factorization of the 
transfer operator is 

a(0, 0') = a + lc~ - l~(cos 28 + cos 28') (8) 
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where s characterizes the elongation of the molecule. The minimum and 
maximum "contact separations" are a(0, 0) = 1 and a(rc/2, ~z/2) = 1 + s, 
respectively. Although this is not a model of hard objects, the dependence 
of its thermodynamics on elongation and pressure will bear a close resem- 
blance to that of hard molecules. 

With this choice of rr(0, 0') we readily obtain 

~(0) = [exp(tips cos 20)]/[Trlo(2tip~)] 1/2 
(9) 

2 = (re~tip) Io(�89 0 exp[ - t ip(a  + �89 

and so from (4) the equation of state can be written as 

1 ( I,(�89 
P(P) - 1 +  rips 1 (10) 
Po(P) 2 Io(�89 

Here 

1 ~=/2 exp(x cos 20) dO, Io(x) ~-~/2  1' 1 (x) = Io(x ) 

are modified Bessel functions. When e = 0 ,  (10) reduces to the usual 
equation of state of hard rods on a line. In this model, only the com- 
bination tips enters [true in general whenever a(O, 0') is linear in the 
elongation c~], so that high pressure and large elongation are inter- 
changeable. From (10), we find for large tips, i.e., either high s or high p, 

p(p) 3 9 1  ( 1 )  
p o ( p ) -  2 }- ~-~ fl--~ + O 

which is precisely the form (6) that corresponds to true hard, finite- 
curvature objects at high pressure. The angular distribution function 
w(0)= l f(0)[ 2 in this limit is of course a delta function centered on 0 = 0 ,  
but we can also obtain the "rescaled" limiting angular distribution by 
setting 0 = ~/(tipe)l/2 and then letting ripe ~ oo. This yields 

#(~b) = (4/re) 1/2 exp(-4~b 2) 

It is not more difficult to consider the effect of an external field acting 
to orient the molecules perpendicular to the line of centers. Let the inter- 
action between this field and a molecule with orientation 0 be -h(O). The 
transfer operator is now 

Zp(O, 0 ' )=  (1/t/p)exp[-tipa(O, 0')] exP[�89 exP[�89 (11) 
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and for the form of a(O, 0') given by (8), the eigenfunction is 

0(0) = exp[�88 cos 20 + �89 (12) 

to within normalization. For  the specific choice h(O) = E cos 0, the equation 
of state is 

1 a 1 1 • l n F  
- = a + ~ +  
p Bp ~ p  

(13) 

F = exp ripe cos 20 + fiE cos 0 dO 

If p ~ oo or ~ ~ ~ at constant E, the result P(P)/Po(P) = 3/2 is of course 
recovered. But suppose that E >  0 and E--* oo at fixed E/e. Then (13) can 
be expanded around the preferred direction, 0 = 0, giving 

1 1 1/2 
- = a +  -t- (14) 
p -~  tip + flE/2a 

In particular, if alE ~ O, the orientational degree of freedom "freezes out" 
and the molecules obey the hard-rod equation of state p ( p ) =  Po(P). 

The formalism developed above has an interesting application to 
physical adsorption. Even though the model is highly idealized, it 
nevertheless contains some of the important physical effects. In physical 
adsorption, the molecules of the adsorbant are attracted to the substrate by 
weak dispersion forces (9). The electronic structure is not greatly disturbed, 
and one can think of the molecules as being in an external field that favors 
a lining up of molecules parallel to the surface, 0 = _+g/2 in our notation. 
However, as surface density increases, the hard-core interaction becomes 
increasingly important, so that a fraction of molecules will orient perpen- 
dicular to the surface, an effect that has been observed in molecular 
dynamics simulations of nitrogen adsorbed on graphite. (6) Our model has 
similar behavior. Suppose that 

h(O) = a 1 exp( - a  2 cos 20), al ,  a2 > 0 

indicative of a strong preference (6'9/ for parallel orientation. The dis- 
tribution function w(O) = ~9(0) 2 of (12) always has a maximum at 0 = +g/2. 
But at 0 = 0, which is also a stationary point, we have 

(In w)"(0) = 2fl(ala2 e- '2 - ep) 

and hence a new maximum also appears at 0 = 0 when 

eP > ala2e -a2 (15) 

These results are indicated pictorially in Fig. 2. 
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Fig. 2. The angular distribution function for the adsorption model. The external field is 
h(0)=exp(-1 .5  cos 20), and the curves are labeled by tip. At high pressure, the angular 
distribution function becomes bimodal. 

4. N U M E R I C A L  RESULTS 

For realistic shapes, it appears difficult to obtain an analytic solution 
to the integral equation (3) for general elongations. It is, however, easy to 
examine the behavior numerically. There are two problems: first, that of 
obtaining a(O, 0'), the distance of closest approach, and second, that of 
solving the integral equation. The form of a(O, 0') is in general sufficiently 
complicated that a numerical approach is not amiss. Suppose we 
approximate a convex body C by a set of n C straight line segments deter- 
mined by the vectors {ci, i =  1 .... no} from the center of C to each vertex. 
Consider a congruent convex body D whose center is a distance r from that 
of C. The condition for a corner of C to touch one of the line segments 
defining body D is 

c/=rex+(1-#)d:+#dj+l 

where i= l , . . . ,nc ,  j = l  ..... nD, and d , ~ + l = d l  with 0 < # < 1 ;  ex is the 
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x-directed unit vector. Similarly, for a corner of D to touch a line segment 
of C, 

d~ = --rex + (1 -- t~) Ci Al- ]Aei+ 1 (16) 

The computational procedure, e.g., for (15), is as follows. Calculate # for 
all combinations of i and j, 

ciy-d:y ( 1 7 )  
~'J-dj+ l,y-djy 

If #ij 6 (0, 1), then the vertex ci cannot touch the side defined by dj, dj+ ~ ; if 
#~j 6 (0, 1 ), it will, and so we calculate 

a =  max c ,x-(1-1~)dj . -#dj+, ,  x (18) 
{ i, j l  u,;eO, 1) } 

Any symmetry present can be used to reduce the number of calculations. 
The simplest example of (18) is that in which C and D are two "needles" of 
length l at respective angles 0 and 0'. Then one finds 

l sin [0 - 0'1 
a(0, 0') = ~  cos(min [01, [0'1) (19) 

where [0[, 10'[ < zr/2. Note that at high density, so that [0], [0'[ N0, one has 

~ ( 0 ,  0 ' )  ~ ~/Io - 0'1 

which is the prototypical case of 7 = 1 in (5). 
Given a(0, 0'), the numerical procedure is direct. For a discrete set of 

n angles 0i=ix/n ,  the integral equation becomes a matrix eigenvalue 
problem 

~ Mijx  j = 2'X i 
1 

where Mu=Zp(Og, Oj), xi=~(0~),  and 2'=n2/~. Following standard 
procedures, the eigenvalues and eigenvectors are obtained by iteration. The 
reciprocal density is then given by 

1 1 1 " 
- 7 j~. ~(Oi, Oj) xiMo.x j 

P ~P [-'~ i, =1 

The number of divisions n of the angular range required to effect an 
accurate solution depends to a large extent on the elongation, but 
n = 8(~160 was found to be satisfactory for the situations we considered. 

822/49/5-6-23 
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Fig. 3. The ratio of the pressure for rectangular molecules to that of a one-dimensional hard- 
rod gas at the same density. The numbers  refer to the length of the rectangle (width = 1). 

Figure 3 shows results for rectangles of different elongation. The limiting 
behavior is clearly illustrated by the plot, which shows P(P)/Po(P) as a 
function of p. The plot visually confirms the limiting ratio of 2 at high 
pressure. 

5. A N A L Y S I S  AT HIGH ELONGATION 

We return to possible analytic solutions. We have seen in the model 
(8) that the limits of very high pressure and very large elongation have 
similar effects on the thermodynamics, which is reasonable enough, given 
that both bias the system toward perpendicular alignment. But the large-c~ 
limit, at least as relevant to the experiments we have quoted, is not quite as 
trivial. Our starting point is an unelongated, perpendicularly oriented, 
hard, convex molecule, again in two dimensions and again symmetric 
about the x and y axes. It is sufficient to specify the first and fourth 
quadrant boundary, which we write in the parametric form 

x =f ( t ) ,  y = g(t)  (20) 
where 

t =  - d x /  dy = - f '  ( t )/g' ( t ) 
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Here t has the range ( - 0% oo ), f is an even, single-valued function, while 
g is odd, and we write a = 2f (0)  as the t ransverse d iameter  of  the molecule. 
If we now elongate in the y direction by a factor  e and ro ta te  counter-  
clockwise by 0, the new b o u n d a r y  becomes  

x = f ( t )  cos O-ocg(t )  sin 0 
(21) 

y = f ( t )  sin 0 + c~g(t) cos 0 

Let us consider the interact ion between two such molecules. If  the first 
is centered at x = 0 ,  the second at x =  r, and the left-hand side of  the 
second molecule is paramet r ized  as was the r ight -hand side of  the first, the 
two boundar ies  are given by 

Xl = f ( t t )  cos 01 - e g ( t l )  sin 01 

Yl = f( tm) sin 01 + ~g(t l )  cos 01 
(22) 

x2 = r - f ( t 2 )  cos 02 - eg(t2) sin 02 

Y2 = - f ( t 2 )  sin 02 + eg(t2) cos 02 

Contac t  corresponds  to the largest value of r such that  xl  = x 2 ,  Yl = Y2, 
dxf fdy l  = dx2/dy2. If we set 

02 = 01 + ( t / 0 { ) 8 ,  12 = t 1 - -  (1 /0{ )S  

these condit ions yield, respectively, 

r = 2 f ( t l )  cos 01 + 6g(t l)  cos 01 - s g ' ( t i )  sin 01 + O(1/s)  

0 = 2 f ( t l )  sin 0 L + fig(t1) sin 01 + sg ' ( t l )  cos 01 + O(1/~) 

0 = 2 f ' ( t l )  + 6g'( t l )  + O(1/7) 

Since r is the separa t ion  at contact ,  we conclude, on el iminating s and 
using f ' / g '  = - t ~, that  

cr(01, 02) = 2 see 01 [ f ( t l )  + f ~  g ( t l ) ]  + O(1/7) 

where 

t I = 10{(02 - -  0 1 )  -}- O(1/~) (23) 

The  eigenvalue equa t ion  (3) then reads 

o~ -~ dt 

= ~ ( o )  
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Now if c~-+ 0% the (unscaled) eigenfunctions take the form ~k00(0)= 
3 ( 0 -  0o), with 

e200 =~-~ e x p { - 2 t p  sec 0o [ f ( t ) + t g ( t ) ] }  dt (24) 

Hence, 2max occurs at 0o = 0 (perpendicularly aligned molecules) and 

2 fo~  e2max = ~-~ e x p { - - 2 t p [ f ( t ) + t g ( t ) ] }  dt (25) 

The equation of state in the infinite-elongation limit has thus been 
reduced to quadratures. As an example, consider the case of hard ellipses, 
described in the version (20) by the unelongated circle 

x = �89 + t2) 1/2, y = �89 +/,2)1/2 (26) 

Thus, (25) becomes ~J~max = ( 2 / ) v p ) K l ( a t p ) ,  with the limiting equation of 
state 

1 1 K ' l ( a t p )  
a - -  (27) 

p - t i p  K l ( a t p  ) 

with the expected high-pressure limit 

l i p  = a + ~/fiP + (15/64) / ( f lP)  2 + "'" 

as well as the low-pressure form 

1/p = 2 / t p  - ppa 2 In flpa " - 

Somewhat less familiar figures lead, however, to simpler closed forms, e.g., 
the sideways parabola 

x = ~  1 -  , n~>~ (28) 

written as 

a ( t 2n/(2n 1)) a ~n ~/(2n-11 
x = ~  1 -  2nn , y = ~  sgnt 

gives rise to 

o~)bmax=2a(2n_l)2e-#pc~[tpa(2n_l)]-(4n 1)/2n ( 1 ) 
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and hence 

1 4 n - 1  1 
- = a -} ( 2 9 )  
p 2n tip 

In particular, n ~  oo corresponds to rectangular profiles, with 
p(p)/po(p)=2, identical with the p--* oo limit, while n ~  1/2 produces 
diamond-shaped profiles, which show no anomaly at all: P(P)/Po(P)= 1. 

Finally, let us apply the orienting external potential -Eh(O). The only 
modification is that (24) now becomes 

~2Oo=-fi-~exp[fiEh(Oo) ] exp{-2flpsecOo [f( t )+tg(t)]}  dt (30) 

Restricting attention to the high-pressure limit at fixed p/E, we examine the 
finite-curvature case discussed in Section 2. If the radius of curvature in the 
vicinity of t = 0  is R, then x=�89 ..., t = y / R +  ..., so that 
f ( t )  + tg(t) = �89 + �89 2 near t = 0. Hence, (30) reduces to 

c~20o = exp fl[Eh(O0) - ap sec 00] (tip)-3/2 c0s1/2 O0 (31) 

For analytic malleability, let us choose the surface biasing field 

h(O) = sin 2 0 

Then it is easily seen that 2o0 is maximum at 

.[cos-l(ap/2E) 1/3 if p<2E/a 
0o= 

p > 2E/a 
(32) 

and that, correspondingly, 

(R) 1/2 [ (ap/2E) 1/6 e~(E-ap)/2 
C~2m,x = (tip)-3~2 ~e ~ap 

Thus, there is a limiting first-order phase transition, with 

1 f�89 p<2E/a 
p = ~ a +  3/flp, p>2E/a (33) 

A similar result holds for the zero-curvature case mentioned in Section 2. 
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6. DISCUSSION 

We have used the transfer matrix approach to examine the effect of 
increasing elongation on the properties of some one-dimensional model 
systems. Our results are basically in agreement with Frenkel's approximate 
analysis, c4) We are further able to examine the influence of geometry on the 
limiting properties, which at high pressure depend on the behavior of the 
distance of closest approach a(O, 0') around its minimum value. Objects 
with flat sides (at contact) have a higher limiting compressibility factor 
than those with a finite radius of curvature. The properties of these two 
classes of objects appear to be quite different. In addition to the present 
results, we know that a system of perfectly aligned ellipsoids can be trans- 
formed to a system of hard spheres, while there appears to be no such 
transformation for the spherocylinder. Indeed, a recent simulation study 
indicates that a system of perfectly aligned spherocylinders has a nematic- 
smectic phase transition. It is clear that the corresponding ellipsoidal system 
will not have such a behavior. 
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